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Feed-Forward Neural Network

Feed-forward neural network consists of linear
combinations and activation functions.
Feed-Forward Condition: Connections do not form any
loops.
The units can be labelled with integers in such a way that if
there is a connection from the unit labelled i to the
computation unit labelled j then i < j .
A feed-forward network is said to be a linear threshold
network if each activation function is sgn.
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Feed-Forward Neural Network

Figure: Feed-Forward Neural Network
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Theorem 6.1

Suppose that N is a feed-forward linear threshold network
having a total of W variable weights and thresholds, and k
computation units. Let H be the class of functions computable
by N on real inputs. Then for m ≥W the growth function of H
satisfies

ΠH(m) ≤
(

emk
W

)W

,

and hence VCdim(H) < 2Wlog2(2k/ln2).
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Theorem 6.2

Let N be a two-layer linear threshold network, fully connected
between adjacent layers, with n ≥ 3 input units, k computation
units in the first layer (and one output unit in the second layer).
Suppose that k ≤ 2n+1/(n2 + n + 2). Then the class H of
functions computable by N on binary inputs is such that

VCdim(H) ≥ nk + 1 ≥ 3W/5,

where W = nk + 2k + 1 is the total number of weights and
thresholds.
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Theorem 6.3

Let W be any positive integer greater than 32. Then there is a
three-layer feed-forward linear threshold network NW with at
most W weights and thresholds, for which the following holds. If
H is the class of functions computable by Nw on binary inputs,
then

VCdim(H) >
W

132
log2

k
16
,

where k is the number of computation units.
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Theorem 6.4

Let N be a two-layer feed-forward linear threshold network, fully
connected between adjacent layers, having k computation units
and n ≥ 3 inputs, where k ≤ 2n/2−2. Let H be the set of
functions computable by N on Rn. Then

VCdim(H) ≥ nk
8

log2
k
4
≥ W

32
log2

k
4
,

where W = nk + 2k + 1 is the total number of weights and
thresholds
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Theorem 6.5

Suppose s : R→ R satisfies limα→∞s(α) = 1 and
limα→−∞s(α) = 0. Let N be a feed-forward linear threshold
network, and N ′ a network with the same structure as N, but
with the threshold activation functions replaced by the
activation function s in all non-output computation units.
Suppose that S is any finite set of input patterns. Then, any
function computable by N on S is also computable by N ′.

김성현 Neural Network Learning: Theoretical Foundation Chap. 6-7



6 The VC-Dimension of Linear Threshold Networks
7 Bounding the VC-Dimension using Geometric Techniques

6.1 Feed-Forward Neural Network
6.2 Upper Bound
6.3 Lower Bounds
6.4 Sigmoid Networks

Theorem 6.5

Hence the lower bound results Theorem 6.2, Theorem 6.3 and
Theorem 6.4 also hold for such networks, and in particular for
standard sigmoid networks.

김성현 Neural Network Learning: Theoretical Foundation Chap. 6-7



6 The VC-Dimension of Linear Threshold Networks
7 Bounding the VC-Dimension using Geometric Techniques

7.2 The Need for Conditions on the Activation Functions
7.3 A Bound on the Growth Function
7.4 Proof of the Growth Function Bound
7.5 More on Solution Set Components Bounds

Outline

1 6 The VC-Dimension of Linear Threshold Networks
6.1 Feed-Forward Neural Network
6.2 Upper Bound
6.3 Lower Bounds
6.4 Sigmoid Networks

2 7 Bounding the VC-Dimension using Geometric Techniques
7.2 The Need for Conditions on the Activation Functions
7.3 A Bound on the Growth Function
7.4 Proof of the Growth Function Bound
7.5 More on Solution Set Components Bounds

김성현 Neural Network Learning: Theoretical Foundation Chap. 6-7



6 The VC-Dimension of Linear Threshold Networks
7 Bounding the VC-Dimension using Geometric Techniques

7.2 The Need for Conditions on the Activation Functions
7.3 A Bound on the Growth Function
7.4 Proof of the Growth Function Bound
7.5 More on Solution Set Components Bounds

Theorem 7.1

Define
s(x) =

1
1 + e−x + cx3e−x2

sin x

for c > 0. Then s(·) is analytic, and for any sufficiently small
c > 0, we have

limx→∞s(x) = 1,

limx→−∞s(x) = 0,

d2

dx2 s(x)

{
< 0 if x>0
> 0 if x<0
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Theorem 7.1 (Conti.)

Let N be a two-layer network with one real input, two first-layer
computation units using this activation function, and one output
unit, so that functions in HN are of the form

x 7→ sgn(w0 + w1s(a1x) + w2s(a2x)),

with x ,w0,w1,w2,a1,a2 ∈ R. Then VCdim(HN) =∞.
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Lemma 7.2

The class F = {x 7→ sgn(sin(ax)) : a ∈ R+} of functions
defined on N has VCdim(F ) =∞.

Now, let

ha(x) = s(ax) + s(−ax)− 1 = 2c(ax)3e−a2x2
sin(ax).

For a > 0 and x > 0, sgn(ha(x)) = sgn(sin(ax)), so
Lemma 7.2 implies that VCdim(HN) =∞.
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Definition 7.3

Let H be a class of {0,1}-valued functions defined on a set X ,
and F a class of real-valued functions defined on Rd × X . We
say that H is a k -combination of sgn(F ) if there is a boolean
function g : {0,1}k → {0,1} and functions f1, ..., fk in F so that
for all h in H there is a parameter vector a ∈ Rd such that

h(x) = g(sgn(f1(a, x)), ..., sgn(fk (a, x)))

for all x in X .
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Definition 7.3(Conti.)

We say that a function f in F is continuous in its parameters
(Cp in its parameters) if, for all x in X , f (·, x) is continuous
(respectively, Cp).
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Definition 7.4

A set {f1, ..., fk} of differentiable functions mapping from Rd to R
is said to have regular zero-set intersections if, for all nonempty
subsets {i1, ..., il} ⊂ {1, ..., k} , the Jacobian of (fi1 , ..., fil ) :
Rd → Rl has rank l at every point a of the solution set

{a ∈ Rd : fi1(a) = ... = fil (a) = 0}.
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Definition 7.4 (example)

Figure: An example illustrating Definition 7.4
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Definition 7.5

Let G be a set of real-valued functions defined on Rd . We say
that G has solution set components bound B if for any
1 ≤ k ≤ d and any {f1, ..., fk} ⊆ G that has regular zero-set
intersections, we have

CC

(
k⋂

i=1

{a ∈ Rd : fi(a) = 0}

)
≤ B.
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Theorem 7.6

Suppose that F is a class of real-valued functions defined on
Rd × X , and that H is a k -combination of sgn(F ). If F is closed
under addition of constants, has solution set components
bound B, and functions in F are Cd in their parameters, then

ΠH(m) ≤ B
d∑

i=0

(
mk

i

)
≤ B

(
emk

d

)d

,

for m ≥ d/k .
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Lemma 7.7

Given a set {f1, ..., fk} of Cd functions that map from Rd to R,
the set

S = {λ ∈ Rk : {f1 − λ1, ..., fk − λk} does not have regular
zero-set intersections }

has measure 0.
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Lemma 7.8

Let F be a class of real-valued functions defined on Rd ×X that
is closed under addition of constants. Suppose that the
functions in F are continuous in their parameters and let H be a
k -combination of sgn(F ). Then for some functions f1, ..., fk in F
and some examples xi , ..., xm in X , the set

{a 7→ fi(a, xj) : i = 1, ..., k , j = 1, ...,m}

has regular zero-set intersections
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Lemma 7.8 (Conti.)

and the number of connected components of the set

Rd −
k⋃

i=1

m⋃
j=1

{a ∈ Rd : fi(a, xj) = 0}

is at least ΠH(m).

김성현 Neural Network Learning: Theoretical Foundation Chap. 6-7



6 The VC-Dimension of Linear Threshold Networks
7 Bounding the VC-Dimension using Geometric Techniques

7.2 The Need for Conditions on the Activation Functions
7.3 A Bound on the Growth Function
7.4 Proof of the Growth Function Bound
7.5 More on Solution Set Components Bounds

Lemma 7.9

Let {f1, ..., fk} be a set of differentiable functions that map from
Rd to R, with regular zero-set intersections. For each i, define
Zi to be the zero-set of fi : Zi = {a ∈ Rd : fi(a) = 0}. Then

CC

(
Rd −

k⋃
i=1

Zi

)
≤

∑
S⊆{1,...,k}

CC

(⋂
i∈S

Zi

)
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Lemma 7.10

Define a set of functions {f1, ..., fk} as in Lemma 7.9, and define
sets S1, ...,Sk−1 so that for i = 1, ..., k − 1, either
Si = {a ∈ Rd : fi(a) = 0} or Si = {a ∈ Rd : fi(a) 6= 0}. Let C be
a connected component of ∩k−1

i=1 Si , and let C’ be a connected
component of C ∩ a ∈ Rd : fk (a) = 0. Then C − C′ has no more
than two connected components.
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Lemma 7.11

Define a set of functions {f1, ..., fk} and the zero-sets Z1, ...,Zk
as in Lemma 7.9. Let I ⊆ {l , ..., k} and define M = ∩i∈IZi .
Define b = k − |I| and let {M1...,Mb} = {Zi : i /∈ I} . Then

CC

M −
b⋃

j=1

Mj

 ≤ CC

M −
b−1⋃
j=1

Mj

+CC

M ∩Mb −
b−1⋃
j=1

Mj


.
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Intro

If, while computing f (a), we calculate b1, then b2 and so on up
to bn, and we use these to calculate f (a), then we can write f in
the form

f (a) = f̃ (a,b1, ...,bn)

where each bi is a function only of a and b1, ...,bi−1.
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Intro

In this definition, an intermediate calculation is expressed as
b = φ(a) for some function φ. To ensure that the intermediate
variables take the appropriate values, we use the trick of
defining a function g for which the constraint b = φ(a) is
satisfied when g(a,b) = 0.
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Definition 7.12

For a set G of differentiable real-valued functions defined on Rd

and a set G of differentiable real-valued functions defined on
Rd(n+1), we say that G̃ computes G with n intermediate
variables if, for any 1 ≤ k ≤ d and f1, ..., fk ⊆ G, there is a set{

f̃1,g1,1, ...,g1,n, ..., f̃k ,gk ,1, ...,gk ,n

}
⊆ (̃G)

that satisfies the following conditions
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Definition 7.12 (Conti.)

(i) For i = 1, ..., k , there are differentiable functions
φi,1, ..., φi,n : Rd(n+1) → R which can be written

φi,1(a,b) = φi,1(a)

φi,j(a,b) = φi,j(a,bi,1, ...,bi,j−1) for j = 2, ...,n

where a ∈ Rd , and b = (b1,1, ...,b1,n, ...,bd ,n) ∈ Rdn. (The
function φi,j defines the intermediate variable bi,j , and the φi,j
are ordered so that their values depend only on previously
computed intermediate variables.)
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Definition 7.12 (Conti.)

(ii) For i = 1, ..., k , the functions gi,1, ...,gi,n can be written as
gi,j(a,b) = gi,j(a,bi,1, ...,bi,j) for all a, b, and j = l , ...,n. (That is,
the function gi,j depends only on previously computed
intermediate variables, and on bi,j .)
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Definition 7.12 (Conti.)

(iii) For i = 1, ..., k , and l = 1, ...,n, if bi,j = φi,j(a,b) for all a, b,
and j < l , then for all a and b we have

gi,l(a,b) = 0 if and only if bi,l = φi,l(a,b)

and
Dbi,l gi,l(a, φi,1(a,b), ..., φi,l(a,b)) 6= 0

(That is, the function gi,j implicitly defines the intermediate
variable bi,j . The derivative condition ensures that the zero-set
intersections remain regular.)
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Definition 7.12 (Conti.)

(iv) For all a ∈: Rd and b ∈: Rdn, if bi,j = φi,j(a,b) for i = 1, ..., k
and j = 1, ...,n then

fi(a) = f̃i(a, φ1,1(a,b), ..., φk ,n(a,b))

for i = 1, ...,n.
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Theorem 7.13

For function classes G and G̃ and a positive integer n, if G̃
computes G with n intermediate variables, then any solution set
components bound for G̃ is also a solution set components
bound for G.
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